KAZUSAMYCIN B, A NOVEL ANTITUMOR ANTIBIOTIC

Kohtarou Funaishi, Kenji Kawamura, Yasuyuki Sugiura, Noriyuki Nakahori, Eisaku Yoshida and Masanori Okanishi

Exploratory Research Laboratories, Banyu Pharmaceutical Co., Ltd., 2-9-3 Shimomeguro, Meguro-ku, Tokyo 153, Japan

IWAO UMEZAWA, SHINJI FUNAYAMA and KANKI KOMIYAMA

The Kitasato Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108, Japan

(Received for publication December 25, 1986)

A novel antibiotic, kazusamycin B ($C_{32}H_{46}O_7$, MW 542), was isolated from the fermentation broth of *Streptomyces* sp. No. 81-484 and the structure was established mainly on the basis of its physico-chemical properties. Unambiguous ¹³C NMR spectral analysis of kazusamycin B has been also accomplished. Kazusamycin B possesses potent cytocidal activities against L1210 (IC₅₀ 0.0018 µg/ml) and P388 (IC₁₀₀ 0.0016 µg/ml) leukemia cells *in vitro*.

In the course of a continuing search for novel antitumor antibiotics of microbial origin, it was found that *Streptomyces* sp. No. 81-484 produces under certain conditions a new antitumor antibiotic, kazusamycin B (1), as one of the major products together with already known congeners.

In preceding papers^{1~3)}, we reported the production, isolation, physico-chemical properties and biological activities of kazusamycin A (previously reported as kazusamycin (2)) and the taxonomy of the producing organism, *Streptomyces* sp. No. 81-484^{1,2)}. This paper describes the fermentation, isolation, physico-chemical and biological properties, and chemical structure of a novel antitumor antibiotic, kazusamycin B (1).

Stock cultures of the producing organism were inoculated into 500-ml Sakaguchi flasks containing 100 ml of the seed medium and the flasks were incubated at 28°C for 4 days on a reciprocal shaker. The resulting culture (2.5 liters) was then transferred to a 200-liter fermentor containing 120 liters of the production medium and the fermentation was carried out at 28°C for 124 hours.

The fermentation broth was mixed with Hyflo Super-Cell and filtered. The broth filtrate was adsorbed on a column of Amberlite XAD-7 and the column washed firstly with water, then with 20% aq methanol; the active components were eluted with 60% aq methanol. The mycelial cake was extracted separately with methanol. After the aq methanol solutions containing active components were mixed and concentrated *in vacuo* to 6 liters, pH was adjusted to 6.8 with conc HCl and active substances were extracted with ethyl acetate. The ethyl acetate extract was concentrated *in vacuo* and subjected twice to silica gel column chromatography. The active fractions were combined and subjected to preparative HPLC (Fig. 1). Kazusamycin B (1) was isolated together with kazusamycin A (2)^{1,2)} and leptomycins A (3) and B (4)^{4,5)}. Identification of $2 \sim 4$ was accomplished by comparison of UV, IR, MS, ¹H and ¹³C NMR and $[\alpha]_{12}^{20}$ data with those reported in the literature^{2,4,5)} and further confirmed by direct comparison with authentic specimens (TLC and HPLC).

UV (Fig. 2) and IR (Fig. 3) spectra of kazusamycin B are almost superimposable on those of

kazusamycin A (2)^{1,2)} and leptomycins A (3) and B (4)^{4,5)}. It was concluded that kazusamycin B possesses the same skeleton as $2 \sim 4$. Field desorption mass spectrometry (FD-MS) of kazusamycin B gave peaks at m/z 543 (M⁺+1) and 565 (M⁺+Na) (Table 1).

Fig. 1. HPLC of kazusamycins B (1) and A (2) and leptomycins A (3) and B (4).

Column conditions: Column, YMC A-303, $4.6\phi \times 150$ mm; solvent, MeOH - 0.01 M H₃PO₄ (75:25); flow rate, 1 ml/minute; temp, 40°C; detector, UV₂₂₀. Structure elucidation of kazusamycin B (1) was mainly done by comparison of the physicochemical data with those of kazusamycin A (2)^{1,2)} and leptomycins A (3) and B (4)^{4,5)}. In the ¹³C NMR spectrum of kazusamycin B, 32 signals were observed which were classified into $CH_3 \times 7$, $CH_2 \times 3$, $CH \times 16$, $C=O \times 3$ and three quarternary

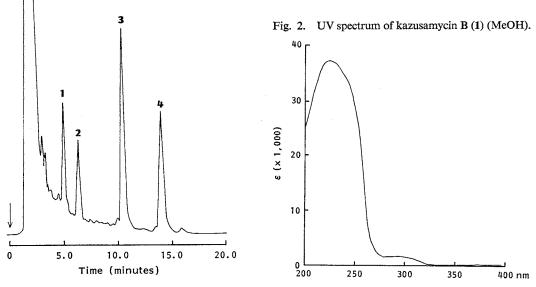
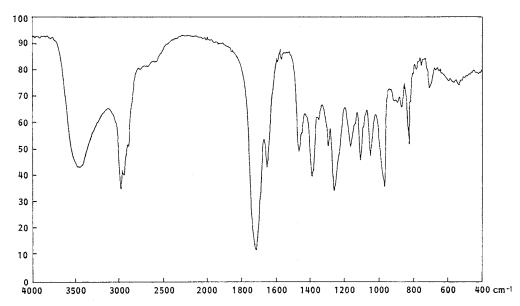



Fig. 3. IR spectrum of kazusamycin B (1) (KBr).

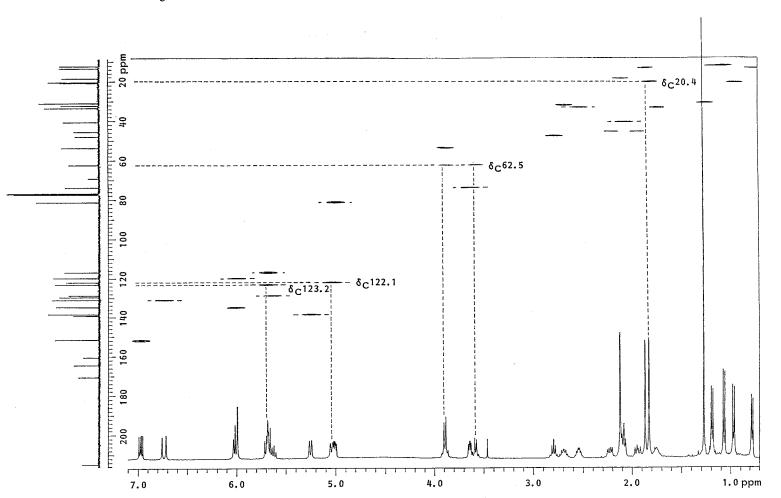

	Molecular formula	MW	SI-MS	FD-MS
Kazusamycin B (1)	$C_{32}H_{48}O_7$	542	543	565
			387	543
Kazusamycin A (2)	$C_{33}H_{48}O_7$	556	557	579
			401	557
Leptomycin A (3)	$C_{32}H_{46}O_{6}$	526	527	
			371	
Leptomycin B (4)	$C_{33}H_{48}O_6$	540	541	
			385	

Table 1. Mass spectral data of kazusamycin B (1) and related compounds.

SI-MS: Secondary ion mass spectra.


No. —	δ_{H}		$\delta_{ m C}$		
	Kazusamycin B (1)	Kazusamycin A (2)	Kazusamycin B (1)	Kazusamycin A (2)	
1			164.4 s	164.3 s	
2	6.02 1H, dd	6.01 1H, dd	119.9 d	120.0 d	
3	6.97 1H, dd	6.97 1H, dd	151.7 d	151.7 d	
4	2.54 1H, ddq	2.54 1H, ddq	33.5 d	33.5 d	
5	5.01 1H, ddd	4.99 1H, ddd	81.3 d	81.5 d	
6	5.69 1H, dd	5.72 1H, dd	123.2 d	122.6 d	
7	6.74 1H, d	6.64 1H, d	131.1 d	130.2 d	
8		_	129.6 s	135.6 s	
9	5.25 1H, d	5.23 1H, d	138.6 d	136.8 d	
10	2.69 1H, m	2.68 1H, m	32.2 d	32.1 d	
11	2.09 2H, ddd	2.10 2H, ddd	40.7 t	40.8 t	
12	5.63 1H, ddd	5.64 1H, ddd	128.8 d	129.0 d	
13	6.02 1H, d	6.01 1H, d	134.9 đ	134.8 d	
14		_	139.3 s	139.2 s	
15	5.04 1H, d	5.04 1H, d	122.1 d	122.0 s	
16	3.89 1H, ddd	3.89 1H, ddd	53.8 d	53.8 d	
17			215.0 s	215.1 s	
18	2.80 1H, dq	2.80 1H, dq	48.0 d	47.8 d	
19	3.64 1H, dd	3.64 1H, dd	73.9 d	73.9 d	
20	1.76 1H, m	1.76 1H, m	33.4 d	33.5 d	
21	1.94 1H, dd	1.94 1H, dd	45.6 t	45.6 t	
	2.23 1H, dd	2.22 1H, dd			
22	^		160.7 s	160.8 s	
23	5.69 1H, br s	5.69 1H, br	116.9 d	116.8 d	
24		_	170.6 s	170.6 s	
25	1.07 3H, d	1.07 3H, d	12.3 q	12.3 q	
26	1.83 3H, s	2.21 2H, q	20.4 g	26.5 t	
27		1.06 3H, t	•	13.6 q	
28	0.97 3H, d	0.98 3H, d	20.8 q	20.9 g	
29	1.87 3H, s	1.86 3H, s	13.3 q	13.3 q	
30	3.89 1H, dd,	3.89 1H, dd,	62.5 t	62.5 t	
	3.58 1H, dd	3.59 1H, dd		-	
31	1.19 3H, d	1.19 3H, d	12.3 q	12.3 q	
32	0.78 3H, d	0.78 3H, d	13.4 q	13.5 q	
33	2.12 3H, s	2.13 3H, s	18.5 q	18.6 q	

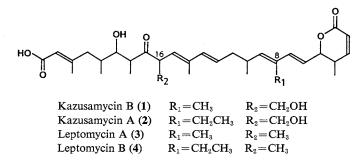

Table 2. ¹H and ¹³C NMR spectral data of kazusamycins B (1) and A (2) (in CDCl₃).

Fig. 4. Two-dimensional ¹H-¹³C chemical shift correlation map of kazusamycin B (1) in CDCl₃.

781

carbons (Table 2). Because a signal corresponding to a carbinol methylene moiety [δ_c 62.5 (C-30)], which was observed in the ¹³C NMR of **2**, was also observed in the ¹³C NMR of kazusamycin **B** (Fig. 4), it was concluded that **1** possessed three active hydrogens in the molecule and the number of hydrogens was calculated to be 46. From the observations described above, the molecular formula of **1** was established to be $C_{32}H_{46}O_7$ (MW 542), corresponding to one CH₂ less than kazusamycin **A** (**2**), one oxygen more than leptomycin **A** (**3**) and one CH₂ less and one oxygen more than leptomycin **B** (4).

In the ¹H NMR spectrum of kazusamycin B (1), most of the ¹H NMR signals of 1 corresponded to those of 2, except for methyl signals (Table 2). Namely, seven methyl signals of 1 were divided into four doublets ($\delta_{\rm H}$ 0.78, 0.97, 1.07 and 1.19) and three singlets ($\delta_{\rm H}$ 1.83, 1.87 and 2.12), whereas the seven methyl signals of 2 were divided into four doublets ($\delta_{\rm H}$ 0.78, 0.98, 1.07 and 1.19), two singlets ($\delta_{\rm H}$ 1.86 and 2.13) and a triplet ($\delta_{\rm H}$ 1.06). It was estimated that in the chemical structure of 1, an ethyl group of 2 was replaced with a methyl group. Because an ethyl signal, which had been observed at $\delta_{\rm H}$ 1.06 (3H, t) and 2.21 (2H, q) in the ¹H NMR of 2 disappeared in the ¹H NMR of 1, whereas other six methyl signals of 1 corresponded to those of 2, it was concluded that a methyl signal at $\delta_{\rm H}$ 1.83 or 1.87 was the newly appeared signal in 1. As it will be mentioned later, a methyl signal at $\delta_{\rm H}$ 1.87 corresponding to $\delta_{\rm C}$ 13.3 in the ¹H-¹³C HETCOR experiments (Fig. 4) was assigned to the C-14-methyl (C-29) group of 2. Thus, it was concluded that a methyl signal at $\delta_{\rm H}$ 1.83 ($\delta_{\rm C}$ 20.4) was the newly appeared signal of 1 and was assigned to C-8-methyl (C-26). Signals assigned to C-6~C-9 were shifted according to the change described above (Table 2). From all of the accumulated data described above, the structure of kazusamycin B was established (Fig. 5).

On the other hand, because the ¹H NMR assignments had been made through decoupling study, an unambiguous ¹³C NMR assignment of 1 has been accomplished through the analysis of ¹H-¹³C chemical shift correlation map (Fig. 4) and LSPD experiments. Especially, assignments of methyl signals of 1 have been completed straightforwardly through the analysis of two-dimensional (2D) NMR spectral data. Signals corresponding to newly appeared methyl moiety was observed at $\delta_{\rm H}$ 1.83 (3H, s) and $\delta_{\rm c}$ 20.4, whereas the ethyl signal at the C-8 position of kazusamycin A (2) [$\delta_{\rm H}$ 1.06 (3H, t) and 2.21 (2H, q) and $\delta_{\rm c}$ 13.6 and 26.5] disappeared. The following correlation has also been established: $\delta_{\rm o}$ 122.1 (C-15)– $\delta_{\rm H}$ 5.04 (C-15-H) and $\delta_{\rm c}$ 123.2 (C-6)– $\delta_{\rm H}$ 5.69 (C-6-H).

Assignments of three carbonyl carbons (δ_c 164.4, 170.6 and 215.0) and three quarternary carbons (δ_c 129.6, 139.3 and 160.7) have been accomplished through the combination of ¹H-¹³C HETCOR (2D) NMR spectrum (Fig. 4) and LSPD experiments. When the signal at $\delta_{\rm H}$ 6.97 (C-3-H) was ir-

T - (MIC (µg/ml)				
Test organisms -	1	2	3	4	
Bacillus subtilis ATCC 6633	>100	>100	>100	>100	
Staphylococcus aureus FDA 209P	>100	>100	>100	>100	
Micrococcus luteus ATCC 9341	>100	>100	>100	>100	
Escherichia coli NIHJ	>100	>100	>100	>100	
Saccharomyces cerevisiae IFO 0283	>100	>100	>100	>100	
Candida albicans IAM 4888	>100	>100	>100	>100	
Aspergillus fumigatus IAM 2530	>100	>100	>100	>100	
Rhodotorula rubra IFO 0001	>100	>100	>100	> 100	
Trichophyton mentagrophytes TIMM 1189	>100	>100	>100	>100	
Schizosaccharomyces pombe IAM 4863	0.05	0.03	NT	0.03	
Rhizopus javanicus IAM 6241	3.13	0.78	0.39	0.78	

Table 3. Antimicrobial spectrum of kazusamycin B (1) and related compounds.

NT: Not tested.

radiated, the signal at δ_c 164.4 was simplified so that the signal was assigned to C-1. Because δ_c 215.0 has been assigned to the C-17 position, δ_c 170.6 was assigned to C-24. When δ_H 2.12 [C-22-methyl (C-33)] was irradiated, the signal at δ_c 160.7 was simplified, so that the signal was assigned to C-22. On the other hand, when the signal at δ_H 6.02, which was assigned to C-13-H, was irradiated the signal at δ_c 139.3 was simplified, so that δ_c 139.3 was assigned to C-14 and the remaining quarternary carbon signal (δ_c 129.6) was assigned to C-8.

From all of the observations described above, the unambiguous ¹³C NMR assignments of kazusamycin B (1) have been accomplished as shown in Table 2.

The antimicrobial spectrum of kazusamycin B (1) is similar to that of kazusamycin A (2). The antibiotic was active against *Schizosaccharomyces pombe* IAM 4863 and *Rhizopus javanicus* IAM 6241, but inactive against Gram-positive and Gram-negative bacteria (Table 3). Kazusamycin B (1) showed strong cytotoxic activity against L1210 leukemia (IC_{50} 0.0018 µg/ml) and P388 leukemia (IC_{100} 0.0016 µg/ml) cells *in vitro*. We are presently investigating the antitumor activity against various kinds of murine tumors *in vivo* and the results will be reported elsewhere.

Discussion

It was found that *Streptomyces* sp. No. 81-484 produced a novel antibiotic, kazusamycin B (1) $(C_{32}H_{46}O_7, MW 542)$, under certain conditions, together with formerly isolated congeners kazusamycin A^{1~30} (PD 114721^{8,7)}) (2) and leptomycins A (3) and B^{4,5)} (PD 114720^{8,7)}) (4). It is interesting that the yield of 1, which has not been observed before¹⁾ is now higher than that of 2.

The chemical structure of kazusamycin B (1) was established mainly on the basis of its physicochemical properties. An unambiguous 13 C NMR spectral assignment of 1 has also been made.

Kazusamycin B (1) possesses potent cytocidal activities against L1210 leukemia (IC₅₀ 0.0018 μ g/ml) and P388 leukemia (IC₁₀₀ 0.0016 μ g/ml) cells *in vitro*.

Experimental

General Experimental Procedures

Melting points were determined using a Yanagimoto MP-3 hot stage microscope and are uncorrected. UV spectra were recorded on a Shimadzu model UV 200S spectrophotometer and IR spectra on a Jasco model A-102 interferometer. Mass spectra were obtained with a Jasco model DX-300 mass spectrometer. ¹H and ¹³C NMR spectra were recorded on Bruker WM-360 and Varian XL-400 instruments and run in CDCl₃ solution. Wacogel C-200 (Wako Pure Chemical Industries, Ltd.) was used for column chromatography and DC-Fertigplatten Kieselgel 60 (Merck) was used for TLC analysis.

Taxonomic Studies

Taxonomic studies of Streptomyces sp. No. 81-484 were reported in the previous paper¹).

Fermentation

Stock cultures of the producing organism were inoculated into 500-ml Sakaguchi flasks each containing 100 ml of the seed medium consisting of glucose 2.0%, peptone 0.5%, dry yeast 0.3%, meat extract 0.5%, NaCl 0.5% and CaCO₃ 0.3% (pH 7.0). The flasks were incubated at 28°C for 4 days on a reciprocal shaker. The resulting culture (2.5 liters) was then transferred to a 200-liter fermentor containing 120 liters of a medium consisting of glucose 3.0%, meat extract 0.75%, dry yeast 0.3% and MgSO₄·7H₂O 0.2% (pH 7.0). Fermentation was carried out at 28°C for 124 hours.

Isolation of Kazusamycin B (1) and Related Compounds

The fermentation broth (110 liters) was mixed with 3% Hyflo Super-Cell (Johns-Manville Sales Co., U.S.A.), filtered and washed with 20 liters of water. The broth filtrate was absorbed on a column (5 liters) of Amberlite XAD-7 and the column washed firstly with water, then with 20% aq methanol, and eluted with 60% ag methanol. The active fractions were collected and concd in vacuo to 3 liters. The mycelial cake was extracted with 45 liters of methanol and the extract concd in vacuo to 3 liters. After both aq solutions (6 liters) were combined, pH was adjusted to 6.8 with conc HCl and active substances were extracted with ethyl acetate (2×6 liters). The organic extract was dried over Na₂SO₄ (anhydrous), concd in vacuo and applied to a column packed with silica gel (Wakogel C-200, 1,000 ml), and eluted with n-hexane - acetone (gradient). The active fractions were combined, dissolved in a small volume of benzene, chromatographed over a silica gel column and eluted with ethyl acetate. The resulting mixture was subjected to preparative HPLC (YMC A-343, $20\phi \times 250$ mm, Yamamura Chemical Lab. Co., Ltd.; UV 220 nm) with a solvent system of methanol and 0.05 M phosphoric acid (pH 2.3) (3:1). Each fraction was adjusted to pH 6.0 with 0.1 N NaOH, evaporated under reduced pressure and extracted with ethyl acetate. The organic solvent extract was evaporated to dryness in vacuo. Kazusamycin B (1, 347 mg) was isolated together with kazusamycin A (2, 253 mg)^{1,2)}, leptomycins A (3, 611 mg) and B (4, 434 mg)^{3,4)}.

Physico-chemical Properties of Kazusamycin B (1)

Kazusamycin B (1) was isolated as a pale yellow powder: MP $53 \sim 55^{\circ}$ C; $[\alpha]_{D}^{20} - 152.0^{\circ}$ (c 0.77, CHCl₃); UV spectrum is shown in Fig. 2; IR spectrum is shown in Fig. 3; MS data are given in Table 1; ¹H and ¹³C NMR spectral data are shown in Table 2; 2D ¹H-¹³C chemical shift correlation map is shown in Fig. 4.

Antimicrobial Activity of Kazusamycin B (1) and Related Compounds

The antimicrobial spectra of kazusamycin B (1) and related compounds were determined by an agar dilution method (inoculum size: 10° cells/ml) using Mueller-Hinton agar medium for bacteria and Sabouraud agar for fungi. The minimum inhibitory concentration (MIC) was observed after 18-hour incubation at 37° C for bacteria or 48-hour incubation at 28° C for fungi. The results are shown in Table 3.

Effect of Kazusamycin B (1) on L1210 Leukemia and P388 Leukemia Cells

L1210 cells were maintained in RPMI-1640 medium supplemented with 10% fetal bovine serum; the P388 mouse leukemic cells were maintained in the peritoneal cavity of CDF_1 mice. To determine the cytotoxicity of kazusamycin B (1), L1210 or P388 cells (1×10^4) in 1 ml of medium (RPMI-1640+ 10% FBS) containing various concentrations of the antibiotic were placed in a tissue culture plate (Falcon, 24-cell) and incubated for 72 hours at 37°C in a 5% CO₂-95% air atmosphere. At the end of the incubation period, the cells were counted by a hemacytometer.

Acknowledgments

The authors would like to thank Dr. HIROYUKI HATTORI, National Institute for Basic Biology, for MS, part of the ¹H and ¹³C NMR data and helpful discussions. The authors also would like to thank Dr. TERUHIKO BEPPU, Department of Agricultural Chemistry, Tokyo University for the authentic samples of leptomycins A and B.

References

- UMEZAWA, I.; K. KOMIYAMA, H. OKA, K. OKADA, S. TOMISAKA, T. MIYANO & S. TAKANO: A new antitumor antibiotic, kazusamycin. J. Antibiotics 37: 706~711, 1984
- KOMIYAMA, K.; K. OKADA, H. OKA, S. TOMISAKA, T. MIYANO, S. FUNAYAMA & I. UMEZAWA: Structural study of a new antitumor antibiotic, kazusamycin. J. Antibiotics 38: 220~223, 1985
- KOMIYAMA, K.; K. OKADA, Y. HIROKAWA, K. MASUDA, S. TOMISAKA & I. UMEZAWA: Antitumor activity of a new antibiotic, kazusamycin. J. Antibiotics 38: 224~229, 1985
- HAMAMOTO, T.; S. GUNJI, H. TSUJI & T. BEPPU: Leptomycins A and B, new antifungal antibiotics. I. Taxonomy of the producing strain and their fermentation, purification and characterization. J. Antibiotics 36: 639~645, 1983
- HAMAMOTO, T.; H. SETO & T. BEPPU: Leptomycins A and B, new antifungal antibiotics. II. Structure elucidation. J. Antibiotics 36: 646~650, 1983
- SCHAUMBERG, J. P.; G. C. HOKANSON & J. C. FRENCH: The structure of the antitumor antibiotics, PD 114720 and PD 114721. J. Chem. Soc. Chem. Commun. 1984: 1450~1452, 1984
- 7) TUNAC, J. B.; B. D. GRAHAM, W. E. DOBSON & M. D. LENZINI: Novel antitumor antibiotics, CI-940 (PD 114,720) and PD 114,721. Taxonomy, fermentation and biological activity. J. Antibiotics 38: 460~ 465, 1985